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The combined effects of system rotation (Coriolis force) and curvature (centrifugal 
force) on the bifurcation structure of two-dimensional flows in a toroidal geometry 
of rectangular cross-section are examined. The problem depends on the Rossby 
number, Ro = U/bQ,  the Ekman number, E k  = v/b2SL, the aspect ratio, y = b / h  
and the radius ratio, y = r I / r o ;  here U is the velocity scale, b is the channel width 
in the spanwise direction, Q is the rotational speed, ( r I , r o )  are the inner and outer 
radii of the duct, h = ro - rI is the channel gap in the radial direction and v is the 
kinematic viscosity of the fluid. A pseudospectral method is devised to discretize 
the two-dimensional Navier-Stokes equation in stream-function form. Continuation 
schemes are used to track the solution paths with Rossby number as the control 
parameter. Extended systems are used to determine the precise location of the 
singular points of the discretized system. The loci of such singular points are tracked 
with respect to curvature of the duct. Unlike the findings of Miyazaki (1973) on the 
same problem, curvature is found to have profound effects on the solution structure; 
flow mutations take place through a tilted cusp at (Ro = 7 .122 ,~  = 0.678) and a 
transcritical bifurcation point at (Ro = 1.357, y = 0.349). 

1. Introduction 
1.1. Curved ducts 

Pressure-driven flow through curved pipes has drawn sustained attention since the 
early experimental works of Eustice (1910, 1911). Dean (1927) was the first to 
formulate the problem in mathematical terms under the fully developed (or axially 
invariant, two-dimensional) flow conditions. He demonstrated the existence of a 
pair of counter-rotating vortices as a secondary flow superimposed on the primary 
Poiseuille flow in a curved pipe. Hence it has come to be known as the Dean problem. 
Since Dean's original analysis, a vast literature has evolved on this problem and is 
reviewed by Berger, Talbot & Yao (1983) and Nandakumar & Masliyah (1986). For 
our purposes, relevant work on the Dean problem is focused on centrifugal instability 
and the bifurcation of two-dimensional solutions with increasing Dean numbers. 
Cheng & Akiyama (1970) were the first to mention dual solutions in loosely coiled 
curved ducts. Since then multiple solutions for fully developed flow in a curved 
duct of square cross-section have been found in the numerical studies of Winters & 
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Brindley (1984), Shanthini & Nandakumar (1986), Winters (1987), Daskopoulos & 
Lenhoff (1989) and Bara, Nandakumar & Masliyah (1992). 

Winters (1987) has presented the most comprehensive bifurcation study on the 
Dean problem, documenting the multiple solution structure consisting of both sym- 
metric and asymmetric solutions. A linear stability analysis by Winters revealed 
that the two-vortex solutions on the primary branch are stable to any arbitrary 
two-dimensional perturbation, while the four-vortex solutions are conditionally sta- 
ble to symmetric perturbations but unstable to asymmetric perturbations. Despite 
the predicted instability of four-vortex flows, they have been visualized by Cheng, 
Nakayama & Akiyama (1979) and Sugiyama, Hayashi & Yamazaki (1983) at certain 
Dean numbers in their experiments, but not as dual solutions (i.e. co-existing at the 
same Dean number as a two-vortex flow). In a recent study Bara et al. (1992) have 
experimentally examined the development of multiple two-dimensional solutions from 
well-prescribed inlet conditions in curved ducts of square cross-section using laser 
Doppler anemometry and verified many of Winter’s predictions. 

1.2. Rotating ducts 
The pressure-driven viscous flow through straight pipes can also exhibit a complex 
secondary flow structure when the pipe is rotated about an axis perpendicular to 
its own. In this case the secondary flow pattern is generated and sustained by 
the Coriolis force introduced by the duct rotation. Interest in Coriolis-force-driven 
secondary flows stems in part from their presence in rotating machinery (Walker 
1975) and in instruments that measure mass flow rates based on the Coriolis effect 
(Raszillier & Durst 1991; Durst & Raszillier 1990). As with the Dean problem, our 
interest in the rotating duct is with the stability aspects of the flow. This aspect 
has been investigated by numerous investigators in the idealized infinite geometry 
(Hart 1971; Lezius & Johnston 1976; Alfredsson & Persson 1989; Finlay 1990, 1992) 
as well as in more practical finite geometries of square (Kheshgi & Scriven 1985; 
Nandakumar et al. 1991), rectangular (Speziale 1982; Speziale & Thangam 1983) 
and circular (Barua 1954; Mansour 1985; Duck 1983) cross-sections. Typically, two 
parameters govern the dynamics of flow in rotating channels. They are (i) the Ekman 
number, defined as E k  = v /b2Q,  which represents the ratio of viscous to Coriolis 
force, and (ii) the Rossby number, defined as Ro = U/bQ,  which represents the 
ratio of the convective acceleration to the Coriolis force. Here Q is the magnitude 
of the angular velocity, b is the length-scale representing the channel width (figure 
l), v is the kinematic viscosity and U is the axial velocity scale which is taken to 
be U = -(l/pQb)(&p/a4) where cp is a potential that combines the centrifugal, 
gravitational and thermodynamic pressure terms and 4 is the angle measured in the 
streamwise direction; p is the density of the fluid. 

The solution to the rotating duct problem is obtainable by analytical means in the 
asymptotic limits of slow and rapid rotation and the flow structure is well understood 
for these cases. When the three forces (convective acceleration, viscous and Coriolis 
forces) are of comparable magnitude, however, nonlinear effects can be quite strong 
and the flow structure can be unraveled only through numerical means. Recognizing 
this, Duck (1983) has used a numerical procedure, based on a combination of 
Fourier decomposition and finite difference discretization to study the flow structure 
in rotating circular ducts. However, owing to convergence difficulties of the iterative 
solution method used, no solutions at high Rossby numbers could be obtained. In 
particular a dual four-vortex solution was not computed. Solution multiplicity is, 
however, expected since the equations governing the two-dimensional flows through 
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rotating channels are analogous to those of laminar flow in coiled ducts (the Dean 
problem) in the double limit of E k  -+ co, (Ro/Ek)  + co, and (Ro /Ek2)  = constant 
as shown for example by Mansour (1985). In a numerical study of the flow in a 
rotating, rectangular duct Speziale (1982, 1983) demonstrated that a transition from 
a two-cell to a four-cell structure occurs as the Rossby number is changed. The 
tasks of demonstrating that both flow structures are possible over a range of Rossby 
numbers and that an intermediate branch connecting the two- and four-cell solution 
branches exists were accomplished by Kheshgi & Scriven (1985) who used a finite 
element discretization and Euler-Newton continuation. For the case of E k  = 0.01, 
they detected and bracketed the values of two limit points. Furthermore, they tracked 
the variation of one of the limit points with Ekman number. However, they did not 
use the extended system formulation to compute the limit points precisely or track 
their variation with other parameters. Also, reflection symmetry in the problem was 
exploited to reduce the computational domain by half. Hence no asymmetric solutions 
could be detected in their simulations. In a more recent work Nandakumar et al. 
(1991) constructed the complete bifurcation diagram for the rotating duct problem 
along the lines of Winters’ contribution to the Dean problem. 

1.3. Common jeatures of the flow 

Several features of the solution structure found by Winters for the Dean problem 
are similar to those presented by Nandakumar et al. (1991) for rotating rectangular 
ducts and also those occurring in non-isothermal mixed-convection heat transfer in a 
square duct (Nandakumar & Weinitschke 1991), also known as the Morton problem, 
where buoyancy-induced instability causes similar structural changes in the solution. 

All of these three problems (the Dean problem, rotating duct problem and the 
Morton problem) discussed above share the following common features : 

(i) The primary flow in the streamwise direction is pressure driven in a finite- 
geometry duct or tube with an inlet and outlet. Thus the flow is inherently three- 
dimensional near the inlet region. In certain regions of the parameter space, the flow 
develops from the inlet condition and reaches a streamwise-invariant state for low 
values of the dynamical parameter. 

(ii) A secondary flow is generated by a body force (centrifugal, Coriolis or buoy- 
ancy force) and this secondary flow is always present for any non-zero forcing of the 
body force. As a consequence, the flow is always at least two-dimensional in nature. 
Often a three-dimensional inlet region of sufficient length is needed for the flow to 
develop into an invariant state in the streamwise direction. 

(iii) The primary flow pattern breaks down above a critical value of the forcing 
parameter (Dean number, Rossby number or Grashof number) leading to a complex 
bifurcation structure involving two-dimensional flows. 

(iv) Of the several co-existing two-dimensional flow structures ( i.e. multiple solu- 
tions) one that warrants some scrutiny is a four-cell secondary flow structure which 
is predicted to be conditionally stable in all of the three problems. In particular this 
four-cell flow is unstable to asymmetric perturbations. Yet, it remains observable in 
experiments on the Dean problem. This is believed to be due to the slow growth rates 
of the unstable asymmetric modes. 

(v) There is a range of the forcing parameter wherein no stable two-dimensional 
solutions are present. In this region some form of fully developed three-dimensional 
flow must evolve. Computations and experiments with the Dean problem indicate that 
a streamwise-periodic three-dimensional flow evolves first, followed by the formation 
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of travelling waves. Such phenomena in the other two problems have not yet been 
explored. 

The development of two-dimensional solutions from a given inlet profile in curved 
ducts of rectangular cross-section has been studied by numerous investigators (Ghia 
& Sokhey 1977; Humphrey, Taylor & Whitelaw 1977; Yee, Chilukuri & Humphrey 
1980; Taylor, Whitelaw & Yianneskis 1982; Hille, Vehrenkamp & Schulz-Dubois 
1985; Sankar, Nandakumar, & Masliyah 1988; Soh 1988). The most detailed 
measurements of the flow development in a curved duct of square cross-section were 
performed using laser Doppler anemometry by Hille et al. (1985) and by Bara et 
al. (1992). The measurements of Hille et al. (1985) revealed the development of an 
asymmetric four-vortex structure at Dean numbers between 150 and 300, but the flow 
had not reached a fully developed state within the 180" axial length of their duct. In 
the numerical study of the flow development in a curved duct of square cross-section, 
Sankar et al. (1988) found that it was possible for a four-vortex flow to develop 
sustained spatial oscillations in the streamwise direction. The numerical study by Soh 
(1988) showed that, depending on the inlet condition for a given flow rate, the flow 
might develop into the two-cell and four-cell states predicted by the two-dimensional 
bifurcation study of Winters (1987). 

1.4. Combined eJffects o j  curvature and system rotation 

As a natural extension to this class of problems, the effect of system rotation on 
curved duct flow has been investigated by numerous investigators. Ludwieg (1951) 
and Hocking (1967) developed a solution based on the momentum integral method. 
Miyazaki (1971, 1973) examined the solution when the pressure-driven flow and the 
sense of rotation are in the same direction. In such cases the flow resistance was 
found to increase with the strength of rotation. It6 & Motai (1974) examined both 
co- and counter-rotating cases with respect to the direction of pressure-driven flow. 
With the counter-rotating case, a reduction in the strength of the secondary flow 
and even a secondary flow reversal was observed. Experiments on rotating curved 
ducts have been performed by Piesche & Felsh (1980). In the most recent study 
on this problem, Daskopoulos & Lenhoff (1990) have presented the first and most 
comprehensive bifurcation study of this combined problem. Note that Daskopoulos 
& Lenhoff (1990) have considered a circular geometry, with a symmetry condition 
imposed along the centreline. Thus questions concerning non-symmetric solutions and 
symmetry-breaking bifurcations have been left unanswered. They have also invoked 
the loose-coiling approximation. 

Even for the pure Dean problem without system rotation, the solution structure 
for the circular cross-section is still not fully understood. For example it is not 
clear whether symmetry-breaking bifurcation can occur in such geometries. There is 
also the long-standing controversy regarding the asymptotic behaviour of the friction 
factor vs. Dean number relationship (Van Dyke 1978; Dennis 1980; Ramshankar & 
Sreenivasan 1988; Dennis & Riley 1982). On the other hand, the bifurcation structure 
in curved ducts (Winters 1987) and rotating straight ducts (Nandakumar et al. 1991) 
of square cross-section is well understood. Hence a square cross-section is appropriate 
for a comprehensive study when both curvature and system rotation are present and 
this is the focus of our present study. 

Neither the loose-coiling approximation nor symmetry conditions are imposed in 
our study. The nonlinear equations are discretized using a pseudospectral discretiza- 
tion with Chebyshev polynomials. We construct the bifurcation diagrams using 
Rossby number as the control parameter. The Eckman number is fixed at Ek = 0.01 
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FIGURE 1. Description of a toroidal geometry of rectangular cross-section 
in cylindrical coordinate system. 

and a square cross-section is considered. The primary solution branch that originates 
at Ro = 0 is tracked as a function of Rossby number for both counter-clockwise 
and clockwise rotation of the duct. In addition, isolated symmetric solution branches 
and asymmetric branches which emanate from symmetry-breaking bifurcation points 
are discovered for each case. The effect of curvature on the structural changes to 
the solution are examined at three different curvature ratios. The location of the 
limit points and symmetry-breaking bifurcation points are determined precisely using 
the extended system formulations (Moore & Spence 1980; Spence & Werner 1982; 
Werner & Spence 1984). The loci of these singular points as the curvature is varied are 
computed using a fold-following scheme. Linear stability is determined by computing 
the complete spectrum of eigenvalues of the discretized problem at selected Rossby 
numbers on all of the solution branches. As there is no method of predicting a priori 
the total number of solutions for a given parameter set, one still cannot be certain that 
all the solution branches of interest have been discovered. However, a self-consistent 
picture of the solution structure emerges from the study. Several new features of the 
solution structure are revealed that are not present in the Dean problem. 

2. Governing equations 
We consider the flow of an incompressible fluid of density p and viscosity p through 

a curved duct of width b in the spanwise direction, height h in the radial direction, and 
rotating about its axis of curvature at the rate SZ (see figure 1). Note that the geometry 
is toroidal and hence finite pitch effects are not considered. The rotation can be co- 
rotational, in which case velocities associated with the angular rotation SZ are in the 
same direction as the pressure-driven streamwise flow, or counter-rotational, where 
the channel walls rotate in the opposite direction to the primary pressure gradient. 
The inner and outer walls of the duct have radii of curvature ri and ro respectively 
as shown in figure 1. We use cylindrical coordinates (&r,z), where +,r,z are the 
streamwise, normal, and spanwise directions respectively with the axis of curvature 
defined as r = 0 and the middle of the duct in the spanwise direction defined as z = 0. 
The flow is driven by a mean pressure gradient 

The Navier-Stokes equations governing the two-dimensional flow through the duct 
are non-dimensionalized using b to scale length in the z-direction, h to scale length in 
the radial direction, U = -(l/pSZb)acp/a@ to scale velocities, where cp is a potential 

in the streamwise direction. 
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that combines pressure, gravitational, and centrifugal forces, p UbQ to scale pressure, 
and l /Q to scale time. If the velocity is expressed in terms of cylindrical components 
(u4, ur, uz),  these equations take the form 

Y 2  

r 
Du, - R o -  u4 + 26u4 = 

-9 + Ek [V2u,], a2 Y(2 + :) + = = 0 ,  a uz 

where 

y = b /h  is the aspect ratio; Ro = U / b Q  is the Rossby number; E k  = v/b2Q is the 
Ekman number; E = 1 if the rotation is counterclockwise; and E = -1 if the rotation 
is clockwise. 

The choice of scales is by no means unique. Hence there is a proliferation of 
definitions of dimensionless groups dealing with Dean problem (see Van Dyke 1978). 
Our choice is inspired by the work of Khesghi & Scriven (1985). An alternative choice 
that leads to a Reynolds number and a rotation number is also used frequently. Such 
alternative definitions are clearly related. For example the Reynolds number defined 
as Re = bU/v is related to Rossby and Ekman numbers by Re = Ro/Ek ,  while 
the rotation number defined as Rn = bQ/U is the inverse of Rossby number, i.e. 
Ra = 1 /Ro  . In the context of the loose-coiling approximation the Dean’s parameter 
lends itself as the natural choice as used by Daskopoulos & Lenhoff (1990). More than 
a particular choice of scales, it is important to understand the physical interpretation. 
In our case the Ekman number represents the ratio of viscous to Coriolis force and 
is held constant at Ek = 0.01. The Rossby number represents the ratio of inertial to 
Coriolis force. As the rotational speed Q is increased, rotational effects are increased 
and this corresponds to the low Rossby number limit. At higher Rossby numbers, the 
inertial (including centrifugal terms) effects dominate the solution and flow structures. 

We satisfy the continuity equation by introducing the stream function w such that 

Taking the curl of the momentum equations eliminates the potential cp and yields the 
vorticity transport equation having the streamwise component 

where co4 is the streamwise component of the vorticity. The third term in equation 
(2.6), (u4/r)au4/az ,  is the source term for generating streamwise vorticity by centrifu- 
gal force and the fourth term, au4/az is the source term representing the Coriolis 
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force. Both of them depend on the gradient of the streamwise velocity with respect 
to the spanwise direction, which is always non-zero owing to the presence of wall 
boundaries in the spanwise direction. Thus a secondary flow is always present for 
any non-zero forcing. In the idealized case of infinite extent in the spanwise direc- 
tion, the basic flow will be one-dimensional and two-dimensional solutions emerge 
at supercritical bifurcations. In the present case, however, the basic flow is itself 
two-dimensional with two counter-rotating streamwise vortices. It is also clear that 
when c = -1 (the co-rotating case), the effects of centrifugal and Coriolis force are 
additive, but 6 = +1 results in the two forces opposing each other and a reversal in 
secondary flow direction becomes possible. 

The streamwise vorticity is related to the stream function y by 

If (2.5) and (2.7) are substituted into (2.6), we obtain the streamwise vorticity equation 
in stream-function form 

("7;") + Ro 
at r 

and the streamwise momentum equation can be written as 

,,(u4) a + R o  

(2.9) 

Our task amounts to finding the equilibrium solutions of (2.8) and (2.9) subject to 
the no-slip and impermeability conditions at the walls of the duct: 

(2.11) 

where q = r i / ro  is a measure of the curvature, and Pi and Po are the dimensionless 
inner and outer radii of the duct respectively. Observe that in (2.8) the Rossby number 
multiplies the centrifugal term 2y(u4/r)au4/az, while the Coriolis term 2cau@/az is of 
order unity. Thus, as Ro is increased curvature effects will dominate over rotational 
ones. 

3. Numerical algorithms 
3.1. Spectral approximation 

We approximate the stream function y and the streamwise velocity u4 by the Cheby- 
shev expansions 

N,-1 N,-1 

Y = Cxn RX(7) Z,Y(Z), 
m=O n=O 
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% = 1 1 C;nR;(i7z;(% 
m=O n=O 

where 
F = 2 r - -  l + r  

1 - r '  2 = 2 z  
are algebraic mappings that transform the cross-section of the duct into the domain 
of Chebyshev polynomials,[-l,l]; Rx, Ri ,  Z,U,, and 2; are linear combinations of 
Chebyshev polynomials, chosen to satisfy the no-slip and impermeability conditions 
at the walls: 

Ry(n) = zy(n) = T1+2(%) - Tl(R), (3.3) 

(3.4) RY(R) = Zy'(R) = (1 + 1) T/+4(5) - 2 (1 + 2) T/+2 (2)  + (1 + 3) TI(%), 
for 1 = 0,1,2, ..., and 2 in [-1,1]. A system of nonlinear algebraic equations for the 
coefficients Cxn and C& is obtained when the Chebyshev expansions of y and u4 are 
substituted into the streamwise vorticity and momentum equations and the resulting 
equations are satisfied at the Gauss points 

for j = 0,1, ..., N ,  - 1, k = 0,1, ..., N ,  - 1. We write this system symbolically as 

f ( C ; 4  = 0, (3.6) 

where C is a vector of size N = 2 N ,  N ,  whose entries are the coefficients C,'&, and 
C;,, f is a vector-valued function also of size N that contains the discrete form of 
the vorticity and momentum equations, and A = (y, Ro, E k ,  y) is a vector in parameter 
space. Our task is to solve the system of nonlinear (3.6) as a function of the 
components of 1. Once the coefficients are found, the flow variables are obtained 
from (3.1) and (3.2). 

3.2. Continuation schemes 
Based on previous studies (Winters 1987; Nandakumar et al. 1991) we expect the 
flow structure to begin with two counter-rotating streamwise-oriented vortices that 
bifurcate into more complicated flow structures through several limit or symmetry- 
breaking points as the Rossby number increases. In the case of curved ducts, the 
cellular structure is due primarily to curvature effects and in the case of rotating ducts 
it is due to Coriolis effects. In our case both effects compete with each other, and 
depending on the curvature and the direction of rotation, four-cell or other structures 
are possible. Therefore, it is wise to begin the solution at Ro = 0 and a large radius 
of curvature (i.e. y + l), since the equations tend to be linear in that limit. The 
equations are solved using the Newton method and a zero initial guess. A correction 
to the estimated solution is found through Newton-Raphson iteration 

6C = J-lf (3.7) 

where J is the Jacobian of system (3.6). Once a converged solution is obtained, 
Euler-Newton continuation is used to continue on any chosen parameter, say a, 
a component of the vector A. This entails developing a good initial guess for the 
solution at a + Aa from the known solution at a using 

ac 
aa 

C(a + AN) = C(a) + -Ada, (3.8) 
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where aC/aa is found from differentiating (3.6) with respect to a :  

This requires only one back substitution since J is already factored during the previous 
Newton iteration. When this method fails to converge, a nearby singularity is indicated 
and we switch to the arclength continuation scheme. This entails reparametrizing the 
problem in terms of arclength, s, 

f(C(s), a(s)) = 0 (3.10) 

and introducing an additional constraint which is a measure of the arclength defined 
by 

N 2 2 z(2) +(;) = l .  
j=1 

Differentiating (3.10) with respect to s provides 

(3.11) 

(3.12) 

Equations (3.11) and (3.12) are solved for dcj/ds and da/ds and represent a regular 
system. Once dcj/ds and da/ds are found at a particular s, the Euler method is used 
predict the solution at s + As: 

dc . 
cj (S + AS) = c~(s)  + 2 AS, 

ds 
(3.13) 

(3.14) 
da 
ds 

a(s + AS) = a(s) + - AS. 

3.3. Calculation of singular points 
Quadratic limit points on the solution path C ( a )  are determined using the extended 
system formulations of Moore & Spence (1980) and Spence & Werner (1982) : 

f(C, a) = 0, fc(C, a)u = 0, m(v) = 1, (3.15) 

where v is the right null vector and the constraint m(u) = 1 enforces the null vector 
to be non-trivial. The system of equations (3.15) is known to be regular at the limit 
point and is solved by a Newton scheme for (C, u, a). 

Symmetry-breaking bifurcation points, which lie on the path of symmetric solutions 
and spawn asymmetric solution branches, are determined by a method proposed by 
Werner & Spence (1984) which uses the same extended system as (3.15), with the 
restriction that C E X,, v E X ,  where X ,  and X u  are the symmetric and antisymmetric 
subspaces, respectively. 

The bifurcation diagrams are illustrated with the dimensionless flow rate, Q, as the 
state variable, which is calculated from 

+1 +I 1 N r - l  Nz-' 
+0.5 

Q = J' lr u6drdz = 4 z Ci,,  J' J' R;(F)Z,"(t)dFdt. 
-1 -1 m=O n=O -0.5 

In order to reveal both branches of asymmetric solutions either the stream function 
or the streamwise velocity on a point away from the line of symmetry is chosen as 
the state variable. 
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FIGURE 2. State diagrams for the flow through curved, counter-rotating ducts of square cross-section 
at  E k  = 0.01 and = 0.85. (a) Dimensionless flow rate vs. Rossby number, (b) detailed view of (a), 
(c) stream function at F = 0.25, z = 0.05 vs. Rossby number. 

4. Discussion of results 
As recognized first by It6 & Motai (1974), curvature induces a centrifugal force 

always pointing radially outwards, while system rotation can cause the Coriolis force 
to be pointing either radially outwards (co-rotation) or radially inwards (counter- 
rotation). When the effects of system rotation (Coriolis force) oppose those due 
to curvature (centrifugal force), one can intuitively expect a series of complex flow 
mutations and secondary flow reversals as a dynamic parameter is gradually varied 
in parameter space. When the centrifugal and Coriolis effects aid each other, the 
secondary flow strength is merely intensified. Hence the counter-rotating case is 
examined first. 

We examine in detail the changes in both the solution structure andpow structure 
as Rossby number and curvature ratio are varied. By solution structure we mean the 
number of solution branches and changes in their connectivity and stability. By flow 
structure we mean the secondary flow pattern, which is characterized by the number 
of cells and their sense of circulation. 

4.1. Counter-rotation, E = 1 
The scaling of variables has been chosen to correspond to those used by Khesgi 
& Scriven (1985) and Nandakumar et al. (1991). Continuing the focus established 
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FIGURE 3. Vector plots of secondary flow and perspective plots of streamwise velocity for flow 
through a curved, counter-rotating duct of square cross section at E k  = 0.01, q = 0.85. (a, b) on the 
branch P M  at Ro = 5 ,  (c ,d )  on the branch P M  at Ro = 10, (e , f )  on the branch IS1 at Ro = 40 
and point 1, (g,h) on the branch IS1 at Ro = 40 and point 2. 

in these two studies, the Ekman number is fixed at 0.01 and a square cross-section 
( y  = 1) is considered. The computed state diagram for a curvature ratio of q = 0.85 
is shown in figure 2(a,b) using flow rate and the stream function at (0.25,0.05). In 
the case of rotating straight ducts, all previous work indicates that the flow rate 
decreases with increasing Ro due to increased resistance caused by secondary flow. 
Furthermore Nandakumar et al. (1991) have computed that up to five solutions can 
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Point 1 6 x  16 18 x 18 19 x 19 2 0 x 2 0  

L1 9.254174 9.254234 9.254054 9.254163 
L2 9.639705 9.639561 9.639529 9.639533 
L3 13.924666 13.915435 13.911510 13.912308 
L4 18.255297 18.251884 18.253340 18.252435 

SB1 15.969090 16.007463 15.995551 15.998275 
L5 20.564129 20.566255 20.570662 20.569903 

TABLE 1. Limit points and symmetry-breaking points for flow through a curved, counter-rotating 
( E  = 1) duct at y = l ,q = 0.85 and E k  = 0.01 

Ro Branch Symmetric modes Antisymmetric modes 

9.5 PM before L2 Stable Stable 
PM between Ll-L2 0.095538 No addition 
PM between Ll-L4 Stable Stable 

15 PM between Ll-L4 Stable Stable 
PM between SB-L3 0.52057 0.56061 

PM beyond L3 Stable 0.42478 

17 PM between L1-L4 Stable Stable 

PM beyond L3 Stable 0.2 7 9 9 8 
PM between SB-L4 0.62105 0.13742 f 0.4080 i 

AS 1 0.56175 0.3007 i 

40 IS1 (point 1) Stable Stable 
IS1 (point 2) 5.1768 4.0464 

0.13869 f -5.0123 i 1.9493 

TABLE 2. Calculated eigenvalues for curved counter-rotating (c = 1) duct at y = 1 , ~  = 0.85 and 
E k  = 0.01 

exist at Ro = 5,  all of them being unstable. Figure 2(a), however, shows a unique 
stable two-cell solution for Ro as high as 9.25 when curvature is present. Furthermore, 
there is a sharp increase in flow rate near a Rossby number of 9.0. 

The physical mechanisms responsible for such behaviour are easily understood 
once we recognize that a finite curvature has the tendency to induce a secondary flow 
directed radially outward in the middle of the channel while a system rotation has 
a tendency to induce secondary flow in the radially inward direction. At low Ro, 
the rotational effect dominates the flow, which must be weakened by the increasing 
magnitude of centrifugal force with increasing Ro. Thus the net secondary flow is 
actually weakened over a certain range of Ro, resulting in a net increase in the 
streamwise flow rate, as well as a delay in the flow mutations. 

Vector plots of secondary flow and perspective plots of streamwise velocity are 
shown in figure 3(a-h). These illustrate the changes in flow structure with increasing 
Rossby number. At low Rossby numbers (Ro = 5 in figure 3a,b) the secondary flow 
has a two-cell structure. The secondary flow is pointed radially inwards (Coriolis- 
force-dominated flow) at z = 0 as seen from the vector plot, as well as from the 
indirect evidence of shift in the maximum of streamwise velocity towards the inner 
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FIGURE 4. Perspective plots of streamwise velocity and contour plots of stream function for the flow 
through curved, counter-rotating ducts of square cross section at E k  = 0.01, Q = 0.85: (a) on the 
branch PA4 before L4 at Ro = 17, (b) on the branch P M  between L4 and L3 at Ro = 17, (c) on 
the branch P M  after L3 at Ro = 17, ( d )  the asymmetric solution on the branch AS1 at Ro = 17. 

radial wall. At Ro = 10, in figure 3(c,d), the secondary flow reversal has begun with 
the formation of two additional strong cells in the middle of the duct with a radially 
outward flow in the middle of the duct and a corresponding shift in the maximum 
streamwise velocity towards the outer wall. In this range of Rossby number, the 
centrifugal force begins to dominate the rotational effect. Figure 3(e,,fi shows the 
flow pattern where the centrifugal force dominates the flow field at Ro = 40 and the 
secondary flow direction is completely reversed. This is at the point labelled 1 on 
branch IS1 in figure 2(c). As will be shown later, this part of branch IS1 actually 
becomes connected to the primary branch PM through a transcritical point and hence 
it inherits the stability and flow structure of branch PM. On the other side of branch 
IS1 (labelled 2) additional cells are formed near the outer wall as seen in figure 3(g,h). 
Except for the flow structure shown in figure 3(c,d), all of the other flow structures 
are similar to previously determined patterns in the presence of curvature or rotation 
alone. 

At sufficiently large Ro (Ro > 10 in figure 2a), the centrifugal force is established as 
the dominant mechanism and the mean flow continues to decrease with increasing Ro 
and further flow bifurcations take place. The solution structure is, however, different 
from that computed in Nandakumar et al. (1991) for a straight rotating duct, or 
by Winters (1987) for a stationary curved duct, thus establishing that the system 
rotation has a strong influence on the solution structure. All of the computed limit 
and symmetry-breaking points are given in table 1. This table also provides a measure 
of the adequacy of the spectral resolution. The lower limit points are accurate up to 
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(c) stream function at  i: = 0.25, z = 0.05 vs. Rossby number. 

five significant digits while the higher ones have three-significant-digit accuracy. Most 
of the results were obtained at a resolution of 16 x 16. 

The limit points are labelled in increasing numerical order in figure 2(c). Limit 
points L1 and L2 correspond to the switch in the dominant mechanism from Coriolis 
to centrifugal force. The stability of these branches was determined by computing the 
complete spectrum of eigenvalues of the discrete problem at selected values of Ro. 
Spectral methods are notorious for introducing spurious modes. Fortunately they are 
also easy to detect using a few markers. Firstly such spurious modes are an order of 
magnitude larger in value. They are also extremely sensitive to spectral refinement. 
Using these markers along with the expected change in stability at singular points 
we can piece together a reasonably consistent stability picture. The uncertainties in 
this scenario can arise due to undetected singular points, particularly Hopf points or 
bifurcation of three-dimensional solutions, both of which are not investigated here. 

Results of the stability calculations are summarized in table 2 and are also marked 
in figure 2(c). Here the notation is as follows: each (s+) refers to one positive, 
symmetric mode and each (a+) refers to one positive antisymmetric mode. The 
primary branch PM starting at the origin Ro = 0 remains stable until the limit 
point L2. The intermediate branch between L1 and L2 has developed one unstable 
mode and part of the primary branch between L1 and L4 remains stable to both 
symmetric and asymmetric perturbations. Since the symmetry-breaking point SB is 
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around Ro = 16, stability of PM between L3 and L4 is determined by calculating 
eigenvalues on either side of SB, viz. at Ro = 15,17. Between L4 and SB there appears 
one unstable symmetric mode which is consistent with crossing over one limit point. 
There is also a pair of complex eigenvalues with a positive real part. This anomaly 
might be indicative of the presence of a Hopf point in this neighbourhood. Between 
SB and L3, a symmetric and an antisymmetric unstable mode are found and this 
is consistent with crossing over a symmetry-breaking point. Turning around L3, the 
unstable symmetric mode disappears, leaving one unstable asymmetric mode. Thus, 
part of the branch PM past L3 is stable with respect to symmetric perturbations and 
unstable to asymmetric perturbations, a result which is similar to that found in the 
Dean and rotating straight duct problems. The upper part of the branch IS1 in figure 
2(c) is found to be stable, while the lower part has several unstable modes. 

Note that between SB and L4, there are five different solutions, two of which are 
asymmetric. Typical flow patterns of these multiple solutions are shown in figure 
4 ( 4  at Ro = 17. Since the pair of asymmetric solutions are mirror images of each 
other, the flow pattern of only one is shown in figure 4(d). The degree of asymmetry 
is seen to be very small as is typical in this class of flows. The small vortices found 
near the corner of the inner wall in figure 4(a) are remnants the Coriolis mechanism. 
Since the centrifugal force begins to dominate at these Rossby numbers, the unstable 
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flow domain is near the outer wall, where two additional cells are seen to be born in 
figure 4(b) and grow in size and strength in 4(c). 

4.2. Efec t  of curvature with counter-rotution 

In order to determine how the solution structure changes with changing curvature 
ratio, two additional bifurcation diagrams were computed at y = 0.6 and 0.3. They 
are shown in figures 5 and 6 respectively. Note that there are significant structural 
differences between the bifurcation diagrams at q = 0.85,0.6 and 0.3. As y is decreased, 
the bifurcations take place at lower values of Ro. A comparison of the centrifugal 
and Coriolis source terms in (2.6) (viz. y Ro (u@/r)au4/az,  and au,/az) together with 
the definition of Ro = U / b Q  is helpful in interpreting some of the trends displayed 
in figures 2,5 and 6. Since decreasing y implies tighter coils (i.e. smaller radius of 
curvature) the two terms identified above balance each other at lower values of Ro. 
Clearly flow mutations and secondary flow reversals begin to occur when these two 
terms cancel each other. Such cancellations occur at lower Ro with decreasing y due 
to the appearance of (Rolr) in the centrifugal force term, i.e. the centrifugal force 
term begins to dominate at lower values of Ro as y is decreased. 

In the absence of system rotation, Winters (1987) has determined that decreasing 
the radius of curvature tends to delay flow transitions with respect to Dean number, 
i.e. the singular points move to higher values of the Dean number. But there are no 
structural changes in the solution, implying that there are no higher-order singularities 
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Point 16 x 16 

L3 0.7526400 
L5 1.712792 
L7 1.998927 
SB 1.960775 

TABLE 3. Limit points and symmetry-breaking points for flow through a curved counter-rotating 
( E  = 1) duct at y = 1,y = 0.30 and E k  = 0.01 

No. Ro Branch Symmetric modes Antisymmetric modes 

1 2.5 PM Stable Stable 

2 2.5 IS1 3.59608 2.9669687 
0.8 744 3 5 7 3 

3 2.5 IS 1 stable 0.8461 6624 

4 1.84 IS 1 1.77979 1.7369 1789 
E {L2,L3} 0.3873218 0.29354811 

TABLE 4. Calculated eigenvalues for curved counter-rotating (c  = 1) duct at y = 1,y = 0.30 and 
E k  = 0.01 

on the fold curves of curvature vs. Dean number. In the present problem, however, 
there are significant structural changes as curvature is varied. Such changes are 
tracked by following the variation of all the limit points found in figures 2,5 and 6 
using (3.15). The resulting fold curves are shown in figure 7. The limit points L3 and 
L5 in figure 2 remain robust over the entire range of v E [0.2,0.85]. The limit points 
L1 and L2 disappear through a cusp at (Ro = 2.3144,~ = 0.7299). Below this value 
of v the secondary flow reversal still takes place, but it is a smooth process as seen in 
figures 5 and 6. The signature for flow reversal in these figures is the net increase in 
streamwise flow rate and change in sign of the stream function. 

The other major structural change concerns how the primary branch PM in figure 
2 becomes connected to IS1. This takes place with the birth of two additional limit 
points L6 and L7 on the upper part of branch IS1 in figure 5. The fold curves in 
figure 7 reveal that L6 and L7 are born at a cusp near (Ro = 7.1220,~ = 0.6776). 
With continued decrease in 11, L6 and L4 merge at a transcritical point near (Ro = 
1.3572,~ = 0.3489). In this process the upper part of IS1 in figure 2(c) becomes 
connected to PM and also inherits its stability properties as seen in figure 6. The 
limit-point values and a summary of eigenvalue calculations at v = 0.3 are shown in 
tables 3 and 4, respectively. The locations where the eigenvalues are computed are 
labelled 1 to 4 in figure 6. 

The bifurcation diagram in figure 5(c) bears a strong resemblance to that computed 
by Nandakumar et al. (1991) for a rotating straight duct. The asymmetric branch that 
originates on PM at SB1 (near L4) terminates at SB2 (near L6) which is on the isolated 
symmetric branch IS1. A second asymmetric branch AS2 originates at SB3 (near L7) 
on IS1. As in related problems of rotating straight ducts (Nandakumar et al. 1991) 
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FIGURE 8. Vector plot of secondary flow, and perspective plots of streamwise velocity and contours 
of stream function for the flow through curved, counter-rotating ducts of square cross-section at 
E k  = 0.01, q = 0.3C and Ro = 2.5. (a,b) the first solution on the curve P M ,  ( c , d )  the second 
solution on the curve IS1 (point 2 in figure 6c), (e,f) the third solution on the curve IS1 (point 3 
in figure 6c), (8, h) the asymmetric solution on the branch AS 1. 

and heated straight ducts (Nandakumar & Weinitschke 1991), the symmetry-breaking 
points and limit points are always closely spaced. Any geometrical perturbation that 
breaks the symmetry, such as a change in the orientation (tilt) of the duct with respect 
to the z-axis will unfold the symmetry-breaking points into limit points which merge 
typically with the nearby limit point at a cusp. 
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The stability picture on either side of L3 in figures 2(c) and 6(c) remains the same, 
with the lower branch having one asymmetric unstable mode and the upper branch 
having a symmetric and asymmetric unstable mode. The flow profiles of multiple 
solutions in figure 6(c) at Ro = 2.5 are shown in figure 8(a-h). The primary branch 
PM has a two-cell flow structure, with the secondary flow at z = 0 directed towards 
the outer wall. The flow profiles at points 2 and 3 on branch IS1 have a four-cell flow 
structure and are similar to the ones observed earlier by Nandakumar et al. (1991). 
The asymmetric profile shown in figure 8(g,h) appears, however, to be quite different 
with four cells spanning the entire width of the duct and with very strong circulation 
in the middle of the channel. The flow at z = 0 in figure 8(g) is seen to be directed 
towards the inner wall. The degree of asymmetry is also quite small. 

4.3. Co-rotation, E = -1 
In the co-rotating case, secondary flow reversal does not take place, since both the 
Coriolis and centrifugal forces drive the secondary flow in the same direction. The 
state diagrams using mean flow rate and streamwise velocity at a point are shown in 
figure 9(a-c) for the case of y = 0.85,Ek = 0.01. Unlike in the counter-rotating case, 
and as expected for the present case, the mean flow decreases with increasing Ro 
since the secondary flow is continuously strengthened with increasing Ro. Four limit 
points are located on the primary symmetric branch and the limit-point values are 
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Point 16 x 16 2 0 x 2 0  

L1 19.834579 19.8888 
L2 24.444803 24.4085 
L3 25.959702 25.4307 
L4 27.790847 27.0220 

TABLE 5. Limit points for flow through a curved co-rotating (e = -1) duct at y = 1,q = 0.85 and 
E k  = 0.01 

No. Ro Branch Symmetric modes Antisymmetric modes 

1 21.75 PM before L2 Stable Stable 

2 21.75 PM E {L1,L2} 1.3518 1.4326 
0.3002 & 1.4108 i 0.11054 & 1.4530 i 

3 21.75 PM E {Ll,L4) 3.9153 k 0.73946 i 4.5074 
1.7954 0.79507 i 

TABLE 6. Calculated eigenvalues for curved co-rotating (e = -1) duct at y = l , ~  = 0.85 and 
E k  = 0.01 

shown in table 5. The stability results are summarized in table 6. The primary branch 
is found to be stable to both symmetric and asymmetric perturbations until the limit 
point L2. Continuing on this path, pairs of complex eigenvalues with positive real 
part are found between (L2,Ll) and (Ll,L4). 

The flow structure is revealed in figure 10(a-d), three of which are multiple solutions 
at Ro = 21.75 and the fourth one is shown at Ro = 40. The maximum of streamwise 
velocity is always found near the outer radial wall and no flow reversals are found. 
Flow mutations with the formation of additional cells near the outer wall still take 
place as Ro is increased. Note that the regions near the outer wall are unstably 
stratified. 

5.  Concluding remarks 
Although the problem of flow in curved rotating ducts has been studied previously 

by Miyazaki (1973), a very rich solution structure, hitherto unknown, has been 
revealed in the present study. These include asymmetric solution branches that 
emanate at symmetry-breaking bifurcation points and isolated symmetric solution 
branches. All of the asymmetric solution branches have been determined to be 
unstable. It is still not clear whether for rotating curved pipes (Daskopoulos & 
Lenhoff 1990) similar asymmetric solutions are possible, since symmetry has been 
imposed in all of the earlier works. The demonstration by ItG & Motai (1974) that 
secondary flow reversals can take place in rotating curved pipes has been reaffirmed 
in the present study for rotating curved ducts. This occurs when the effect of system 
rotation opposes that of curvature. Unlike in the Dean problem (i.e. stationary curved 
ducts), the solution structure has been found to change significantly with changing 
radius of curvature. 
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FIGURE 10. Perspective plots of streamwise velocity and contour plots of stream function for the 
flow through curved, co-rotating ducts of square cross section at E k  = 0.01, ‘1 = 0.85. (a)  The 
first solution on the curve P M  before L2 at Ro = 21.75, (b) the second solution on the curve P M  
between L2 and L1 at Ro = 21.75, (c) the third solution on the curve P M  after L1 at Ro = 21.75, 
( d )  the solution on the branch P M  at Ro = 40. 
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